

Metalle und Legierungen: Beispiel Zinn Chemische Bindung – Strukturen – Eigenschaften – Anwendungen

Caroline Röhr

AGP-Begleit'vorlesung' (AC-III)

. November 202

Caroline Röhr

Metalle und Legierungen: Beispiel Zim

ZnPb (Rg ZnPb (Rg

- 1 Einleitung: Intermetallische Phasen
- ${\it 2}$ Sn, elementar
- 3 Erinnerung: binäre Phasendiagrammme
- Omega Sn + Cu
- \odot Sn + Nb
- \mathbf{O} Sn + Cs
- Zusammenfassung

-

メロト メロト メヨト メ

1 Einleitung: Intermetallische Phasen

2 Sn, elementar

3 Erinnerung: binäre Phasendiagrammme

Omega Sn + Cu

 \odot Sn + Nb

 \odot Sn + Cs

Zusammenfassung

Metalle und Legierungen

Eigenschaften

- gute elektrische und Wärmeleiter
- vielfältige (einstellbare) mechanische Eigenschaften (Gefüge!)
- ungewöhnliche mechanische Eigenschaften ('Gestalterinnernde Legierungen')
- ▶ (ferro)magnetisch
- Supraleiter
- heterogen-katalytische Eigenschaften
- \blacktriangleright auch nichtkristallin \mapsto metallische Gläser, Quasikristalle
- ?? Struktur Eigenschaft ??
- ?? Elemente/Elementverhältnisse Struktur ??
- ?? Elemente Elementverhältnisse/chemische Zusammensetzung ??
- ?? Stabilität ?? chemische Bindung ??

Anwendung

- mit weitem Abstand wichtigste mechanische Werkstoffe (Maschinen/Anlagenbau)
- ► Baustoffe
- Werkstoffe der Elektrotechnik und Elektronik
- Magnetwerkstoffe (inkl. Supraleitende Magnete)
- \blacktriangleright Heterogenkatalysatoren
- Elektrodenmaterialien ...

^{1:} Anton Eduard van Arkel (1983-1976); 2: Jan Arnold Albert Ketelaar (1908-2001) < 🖹 + 🛛 🛓 🕥 🔍

^{1:} Anton Eduard van Arkel (1983-1976); 2: Jan Arnold Albert Ketelaar (1908-2001) < 🖹 🕨 < 🖹 - 🖓 🗢

^{1:} Anton Eduard van Arkel (1983-1976); 2: Jan Arnold Albert Ketelaar ((1908-2001) < Ξ > < Ξ > Ξ > \Im \bigcirc

VAN ARKEL¹-KETELAAR²-Dreieck der Bindungstypen

1: Anton Eduard van Arkel (1983-1976); 2: Jan Arnold Albert Ketelaar ((1908-2001) < 🖹 > < 🚊 > 🛬 🔗

PSE

围

PSE

A1: Alkali- und Erdalkali-Metalle, Lanthanoide

- elektropositiv (χ klein)
- ▶ sehr große Metallradien (r_{Metall})
- A2: Übergangsmetalle (ohne Zn, Cd, Hg)
 - sehr ähnliche Metallradien
 - vergleichbare Elektronegativitäten
 - unterschiedliche Zahl von Valenzelektronen (v.e.)
- B1: Zn-Gruppe, Triele, Sn und Pb
 - stärker elektronegativ
 - kristallisieren in besonderen Metall-Strukturen, die nicht mit kovalenten Konzepten erklärt werden können
- B2: Si, Ge, Elemente der V. und VI. Hauptgruppe
 - ▶ Kristallchemie mit der 8 N-Regel erklärbar (GRIMM-SOMMERFELD-Verbindungen)
 - Übergang zu den Nichtmetallen
 - ▶ geringe Bandlücken oder zumindestens $DOS_{E_F} = 0$

(I) < (I)

Caroline Röhr

Metalle und Legierungen: Beispiel Zinn

06.11.2024 12/52

PSE: Auswahl Metalle

Strukturbestimmende Grössen in intermetallischen Phasen

- ▶ Elektronenzahlen \mapsto v.e.c. (Valenzelektronenkonzentration)
- ► Ladungsübertrag $\mapsto \triangle(\chi_{M'} \chi_{M''})$
- Radienverhältnisse

VE-Zahl	1	2	3b	5b	1b	3	4
	Na	Mg				Al	Si
χ^1	1.01					1.47	1.74
r_{Kation}^2	139					-	-
$r_{ m Metall}^3$	190					143.2	131.9
	Κ	Ca		V	Cu	Ga	Ge
χ	0.91	1.04			1.9	1.82	2.02
r_{Kation}^2	164	134			-	-	-
$r_{ m Metall}^3$	234	197			128	141.1	136.9
	\mathbf{Rb}	\mathbf{Sr}		Nb	Ag	In	Sn
χ	0.89	0.99		1.60		1.49	1.72
$r_{\rm Kation}^2$	172	144		-		-	-
$r_{\rm Metall}^3$	248	215		147		166.3	162.3
	Cs	Ba	La	Ta	Au	Tl	Pb
x	0.86	0.97	1.08			1.44	1.55
r_{Kation}^2	188	161	136			-	-
$r_{\rm Metall}^3$	267	224	187			171.6	175.0

¹: Allred-Rochow; ²: Shannon für CN = 12; ³: Gschneidner/Waber für CN = 12 \rightarrow (\equiv)

Caroline Röhr

1 Einleitung: Intermetallische Phasen

${\it 2}$ Sn, elementar

3 Erinnerung: binäre Phasendiagrammme

Omega Sn + Cu

 \odot Sn + Nb

 \odot Sn + Cs

Zusammenfassung

▶ atomare Eigenschaften

- ▶ Elektronenkonfiguration: $5s^2 4d^{10} 5p^2$ (4 Valenzelektronen)
- \blacktriangleright $r_{\text{Metall}} = 162.3 \text{ pm}$
- $\lambda \chi = 1.72$
- $\lambda = 9.09 \cdot 10^4 \ \Omega^{-1} \ \mathrm{cm}^{-1}$
- physikalische Eigenschaften des Elements
 - ▶ $M_p = 231.91 \,^{\circ}\text{C}$
 - ► dimorph: α -Sn $\stackrel{> 13.2^{\circ}C}{\langle 13.2^{\circ}C} \beta$ -Sn; +2.09 kJ/mol

metallisches β -Zinn

	Caro	line	Rö	hr
--	------	------	----	----

$\alpha\text{-}$ und $\beta\text{-}\mathrm{Zinn}\text{:}$ Kristallstrukturen und Eigenschaften

graues Sn (< 13.2 $^{\circ}$ C)

- $\triangleright \rho = 5.769 \text{ gcm}^{-3}$
- spröde
- Diamantstruktur (A4)
- $CN = 4 (d_{Sn-Sn} = 281 \text{ pm})$
- Struktur/VRML

metallisches/weißes Sn (> 13.2 $^\circ\mathrm{C})$

- $ightarrow
 ho = 7.285 \ {
 m gcm}^{-3}$
- eigener Strukturtyp
- $\blacktriangleright CN_{Sn} = 4 + 2$
 - $(d_{\text{Sn-Sn}} = 301.6 (4 \times) + 317.5 (2 \times) \text{ pm})$

・ロト ・四ト ・ヨト ・ヨト

► Struktur/VRML

06.11.2024 17 / 52

Zustandsdichten von α - und β -Zinn

FP-LAPW, Wien2k, 1000 k-Punkte, PBE-GGA

Caroline Röhr

06.11.2024 18 / 52

・ロト ・回ト ・目

$\alpha\text{-Sn:}$ Bandstruktur

・ロト ・回ト ・ヨト ・ヨ

- 1 Einleitung: Intermetallische Phasen
- 2 Sn, elementar

3 Erinnerung: binäre Phasendiagrammme

- Omega Sn + Cu
- \odot Sn + Nb
- \odot Sn + Cs
- Zusammenfassung

Erinnerung: binäre Phasendiagramme

s. Festkörperchemie-Vorlesung

Caroline Röhr

▲ Ξ ▶ Ξ ∽ ۹ ペ
 06.11.2024 2<u>1 / 52</u>

- 1 Einleitung: Intermetallische Phasen
- 2 Sn, elementar
- 3 Erinnerung: binäre Phasendiagrammme
- ${\rm 4} {\rm Sn} + {\rm Cu}$
- \odot Sn + Nb
- \odot Sn + Cs
- Zusammenfassung

Kupfer: atomare und physikalische Eigenschaften

- ▶ atomare Eigenschaften
 - ▶ Elektronenkonfiguration: $4s^1 \ 3d^{10} \ 4p^0$ (1 Valenzelektron)
 - ▶ $r_{\text{Metall}} = 127.8 \text{ pm}$
 - $\land \chi = 1.75$
 - $\lambda = 5.9559 \cdot 10^5 \ \Omega^{-1} \ \mathrm{cm}^{-1}$
- physikalische Eigenschaften des Elements
 - ▶ $M_p = 1083.4 \,^{\circ}\text{C}$
 - f.c.c.-Struktur

Cu + Sn (Bronze): Phasendiagramm

HUME-ROTHERY-Phasen ('Elektronenverbindungen')

William Hume-Rothery

1899 - 1968

(University of Oxford)

HUME-ROTHERY-Regeln (1928)

- \blacktriangleright Unterschiede der Metallradien <15 %
- Elektronegativitätsdifferenz klein
- \blacktriangleright gleiche Valenzelektronenzahl \mapsto feste Lösungen
- ▶ unterschiedliche Valenzelektronenzahl → Phasenfolge abhängig von der Valenzelektronenkonzentration (v.e.c.)
 - α (f.c.c.) bei niedriger v.e.c.
 - β und β' (b.c.c.) für v.e.c. $=\frac{21}{14}=1.5$ Cu₅Sn: $\frac{5\times1+1\times4}{6}=\frac{9}{6}=1.5$
 - ▶ γ (komplexe b.c..-Überstruktur) für v.e.c. = $\frac{21}{13}$ = 1.615 Cu₃₁Sn₈: $\frac{31 \times 1 + 8 \times 4}{13}$ = $\frac{63}{39}$ = $\frac{21}{13}$
 - ... δ ... ζ ... • ϵ (h.c.p.) für v.e.c. $= \frac{21}{12} = 1.75$ Cu₃Sn: $\frac{3 \times 1 + 1 \times 4}{4} = \frac{21}{12}$ • n
- 1936 durch MOTT und JONES mittels NFE-Ansatz (Berührung der Fermikugel mit dem BRILLOUIN-Zonen-Rand) 'erklärt'

Struktur von γ -Messing

(日) (同) (三) (三)

Struktur von γ -Messing

- ▶ Schalen¹ um 'Loch': iT (4, violett) oT (4, blau) O (6, schwarz) CO (12, rot) \mapsto 26 Atome
- \blacktriangleright i
T = gemeinsames Tetraeder von vier einander durchdringenden Ikosa
edern
- ▶ rote Zn-Atome bilden äußeres Kuboktaeder (CO)
- ▶ Packung der Kuboktaeder \Downarrow (ähnlich bei f.c.c., b.c.c. und α -Mn-Struktur)

Struktur von γ -Messing

TO: truncated octahedron (β -Käfig, cyan); C: cube; c: center atom $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle$

Eigenschaften und Verwendung von Bronze

- ▶ ca. 7 % Sn: für zähfeste Maschinenteile \Leftarrow
- 20-25 % Sn: Glockenbronze (für Guß geeignet)

E-Module von Messing und Bronze(🗆 🕨 🖌 🗇

Caroline Röhr

Metalle und Legierungen: Beispiel Zinn

- 1 Einleitung: Intermetallische Phasen
- 2 Sn, elementar
- 3 Erinnerung: binäre Phasendiagrammme
- Omega Sn + Cu
- ${\rm if} \, {\rm Sn} + {\rm Nb}$
- \odot Sn + Cs
- Zusammenfassung

▶ Nb: atomare und physikalische Eigenschaften des Elements

- ▶ Elektronenkonfiguration: $5s^2 4d^2 5p^1$ (5 Valenzelektronen?)
- ▶ $r_{\text{Metall}} = 147 \text{ pm}$
- $\lambda \chi = 1.60$
- ▶ b.c.c.-Struktur
- ► $M_p = 2468 \,^{\circ}\text{C}$
- $\lambda = 8.0 \cdot 10^4 \ \Omega^{-1} \ \mathrm{cm}^{-1}$

Verbindungen: stöchiometrische Phasen, jeweils mit eigenen Strukturtypen

- ▶ Nb_3Sn (Cr₃Si-Typ)
- ▶ Nb_6Sn_5 (Tl_6Sn_5)
- ▶ NbSn₂ (Mg₂Cu-Typ)

FRANK-KASPER-Phasen

Frederick Charles Frank* (1911 – 1998)

J. S. Kasper^{*}

FRANK-KASPER-Strukturen

- \blacktriangleright Unterschiede der Metallradien >15 %
- dichteste Packungen ungleich großer Kugeln
- \blacktriangleright Idee: Vermeidung der großen Okta
ederlücken \mapsto Tetraederpackungen
- ► Koordinationspolyeder ausschließlich mit Dreiecksflächen \mapsto FRANK-KASPER-Polyeder

*F. C. Frank, J. S. Kasper, Acta Crystallogr. 11, 184 (1958). ibid. 12, 483 (1959) 🕨 🖛 🚍 🛌 🚆

Caroline Röhr

Metalle und Legierungen: Beispiel Zinn

- ► Cr₃Si-Typ, kubisch, Raumgruppe $Pm\bar{3}n$
- ► $d_{\text{Nb-Nb}} = 264.3 \text{ pm } (2 \times)$ \mapsto Nb-Ketten mit starker d-d-Wechselwirkung

einander durchdringende FK-Polyeder

- $CN_{Sn} = 12$ (Ikosaeder, FK-12)
- CN_{Nb} = 14 (doppelt überkapptes hexagonales Antiprisma, FK-14)
- ▶ VRMLs der Strukturen:
 - ▶ ohne Polyeder
 - mit Ikosaeder
 - beide Polyeder

A D F A B F A B

- ► Cr₃Si-Typ, kubisch, Raumgruppe $Pm\bar{3}n$
- ► $d_{\text{Nb-Nb}} = 264.3 \text{ pm } (2 \times)$ \mapsto Nb-Ketten mit starker d-d-Wechselwirkung

einander durchdringende FK-Polyeder

- $CN_{Sn} = 12$ (Ikosaeder, FK-12)
- CN_{Nb} = 14 (doppelt überkapptes hexagonales Antiprisma, FK-14)
- ▶ VRMLs der Strukturen:
 - ▶ ohne Polyeder
 - mit Ikosaeder
 - beide Polyeder

A D F A B F A B

- Cr₃Si-Typ, kubisch, Raumgruppe $Pm\bar{3}n$
- ► $d_{\text{Nb-Nb}} = 264.3 \text{ pm } (2 \times)$ \mapsto Nb-Ketten mit starker d-d-Wechselwirkung

einander durchdringende FK-Polyeder

- $CN_{Sn} = 12$ (Ikosaeder, FK-12)
- CN_{Nb} = 14 (doppelt überkapptes hexagonales Antiprisma, FK-14)
- ▶ VRMLs der Strukturen:
 - $\blacktriangleright\,$ ohne Polyeder
 - $\blacktriangleright\,$ mit Ikosa
eder
 - beide Polyeder

A D F A B F A B F

Nb₃Sn: Elektronische Struktur (Zustandsdichten)

FP-LAPW-Rechnung, 1000 k-Punkte, PBE-GGA

06.11.2024 34 / 52

・ロト ・回ト ・ヨト

$\rm Nb_3Sn:$ Supraleitende Eigenschaften und Bandstruktur

Sprungtemperatur: $T_{\rm c} = 18.3$ K

▶ kritische Magnetfeldstärke: H_c =30 T

- ▶ '2-Band-Modell'
 - \mapsto direkt bei E_F :
 - ▶ steile (metallische) und
 - ▶ flache (kovalente) Bänder

 $Bandstruktur von Nb_3Sn$

FP-LAPW-Rechnung, 1000 k-Punkte, PBE-GGA

Nb₃Sn: Herstellung und Verwendung

- Problem: sehr spröde
- ▶ Fertigung von Spulen (z.B. für NMR-Magnete)
 - 'bronze process' (Nb-Drähte in Bronze)
 - ▶ 'internal tin' Prozess (Cu mit Nb aussen, Sn innen)
 - ▶ 'powder-in-tube' (PIT) Prozeß (Nb-Rohre, mit Sn gefüllt)
 - ▶ Reaktion zu Nb₃Sn erst <u>nach</u> Formgebung (Diffusion bei ca. 700 °C)

▶ fs.magnet.fsu.edu (ASC,Image Gallery) \Downarrow

Bronze process

Internal Sn process

PIT process

SEM-Bild der Nb₃Sn-'Drähte' nach Wegätzen des Kupfer

Metalle und Legierungen: Beispiel Zim

06.11.2024 36 / 52

- 1 Einleitung: Intermetallische Phasen
- 2 Sn, elementar
- 3 Erinnerung: binäre Phasendiagrammme
- Omega Sn + Cu
- \mathbf{S} Sn + Nb
- $\mathbf{6}$ Sn + Cs
- Zusammenfassung

Caesium: atomare und physikalische Eigenschaften des Elements

▶ atomare Eigenschaften

- Elektronenkonfiguration: $6s^1$ (1 Valenzelektron)
- \blacktriangleright $r_{\text{Metall}} = 267 \text{ pm}$

$$r_{Cs^+} = 188 \text{ pm}$$

$$\lambda \chi = 0.86$$

 $\lambda = 5.0 \cdot 10^4 \ \Omega^{-1} \ \mathrm{cm}^{-1}$

physikalische Eigenschaften des Elements

- $\blacktriangleright M_p = 28 \ ^\circ C$
- b.c.c.-Struktur
- extrem luft- und feuchtigkeitsempfindlich

ZINTL-Konzept

Eduard Zintl 1898 - 1941 (FR: 1928 - 1933)

- ▶ 'ionische' Zerlegung in A^{n+} -Kationen (A1) und M-(Poly)-Anionen (B1/B2): $A_x M_y \xrightarrow{\text{nach}} x A^{n+} + [M_y]^{xn-}$
- ▶ kovalente Bindung im M-(Poly)-Anion $[M_y]^{xn-}$
 - ▶ isostrukturell zu isoelektronischen Elementen (ZINTL)
 - ▶ Bindigkeit folgt der 8 N-Regel (ZINTL-KLEMM-BUSMANN)
 - ▶ WADE-Regeln für elektronenarme Anionen

▶ physikalische Eigenschaften

- 'Strich'-Verbindungen (keine Phasenbreiten)
- relativ hohe Schmelzpunkte
- Halbleiter (schmale Bandlücke)

elektronische Strukturen

- keine A-pDOS unterhalb E_F (A-Kationen!)
- Valenzband mit M-p-Charakter
- ▶ Leitungsband mit M-4p- und/oder A-s/d-Charakter
- M-s/p-Mischung vom chemischen Charakter von M und von Dimensionalität des Polyanions abhängig
- ▶ bindungskritische Punkte auf M M-Bindungen

Phasendiagramm des Systems Cs – Sn

nach Massalski

Caroline Röhr

- $\blacktriangleright \ \beta = \text{Hochtemperaturform}$
- Synthese aus den Elementen
- \blacktriangleright Abschrecken der Schmelze von 700 $^{\circ}\mathrm{C}$
- ► ionische Zerlegung: $4 \text{CsSn} \xrightarrow{\text{nach}} 4 \text{Cs}^+ + \text{Sn}_4^{4^-}$
- $\blacktriangleright~{\rm Sn_4}^{4-}$ isoelektronisch zu ${\rm P}_4 \Rightarrow$

Strukturtyp		KGe		
Kristallsystem		kubisch		
Raumgruppe		$P\bar{4}3n,$ Nr. 218		
Gitterkonstante [pm]	a	1444.74		
Z		32		
<i>R</i> -Werte	R1	0.0395		
	wR2	0.0709		
$d_{\mathrm{Sn-Sn}}$ [pm]		291 - 295		
Kristallographische Daten				

Kristallographische Daten

C. Hoch, C.R., Z. Anorg. Allg. Chem. 628, 1541 (2002).

Ortep-Darstellung der beiden Anionensorten

Elementarzelle

イロト イヨト イヨト イヨ

Caroline Röhr

Metalle und Legierungen: Beispiel Zin

06.11.2024 41 / 52

Tetrelide $A^{\rm I}M^{\rm IV}$ (VE/M-5)

Caroline Röhr

${\rm K}_4{\rm Sn}_9~({\rm VE}/M{=}4.44)$

- ► ionische Zerlegung: $K_4Sn_9 \xrightarrow{\text{nach}}_{\text{Zintl}} 4K^+ + Sn_9^{4-}$
- Cluster:

- e^- -Bilanz für den Cluster: $\underbrace{9 \times 4}_{Sn} + \underbrace{4}_{Ldg.} - \underbrace{18}_{s/l.p.} = 22$ • 11 e^- Pagna = N + 2 (mide Fem
- ▶ 11 e⁻-Paare = N + 2 (*nido*-Form)

C. Hoch, M. Wendorff, C.R., Acta Cryst., C58, 45 (2002).

Elementarzelle der Struktur von $\rm K_4Sn_9$

Kristallsystem		monoklin
Raumgruppe		$P2_1/c,\mathrm{Nr.}$ 14
${\it Gitterkonstanten}$	a	1423.8(2)
[pm, ⁰]	b	835.5(1)
	c	1648.7(3)
	β	95.261(3)
Ζ		4
<i>R</i> -Wert	R1	0.027

Kristallographische Daten

K_4Sn_9 : Totale und partielle Sn Zustandsdichte

elektronische Strukturen: FP-LAPW, PBE (Programme WIEN2K bzw. ELK). 🕨 (🗇) 🗸 🚊

Caroline Röhr

fetalle und Legierungen: Beispiel Zim

WADE-Cluster $[M_9]$

N	Cluster	Gesamtzahl an		$Exo-e^$	Gerüst-	WADE-
		Elektronen	e^- -Paaren	Paare	e ⁻ -Paare	Cluster
9	$[\mathrm{Sn}_9]^{4-}$	$(4 \times 9) + 4 = 40$	20	9	11=N+2	nido
9	$[\mathrm{Bi}_9]^{5+}$	$(5 \times 9) - 5 = 40$	20	9	11=N+2	nido
9	$[\mathrm{Sn}_9]^{2-}$	$(4 \times 9) + 2 = 38$	19	9	10=N+1	closo
8	$[\mathrm{Bi}_8]^{2+}$	$(5 \times 8) - 2 = 38$	19	8	11=N+3	arachno

Caroline Röhr

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 inn
 06.11.2024

45 / 52

Cs_4Sn_9 ?¹

- ▶ plastisch-kristalline Phase
- ▶ keine Hochwinkelreflexe mehr
- ▶ a = 1655 pm, kubisch, hohe Laueklasse ($R_{int} = 5.78$ %)
- Cr₃Si-Anordnung komplett fehlgeordneter Sn₉-Cluster:

Schwerpunkte der trudelnden Cluster

- keine Atome lokalisierbar
- für Rb₄Sn₉: pseudo-kubische, stark fehlgeordnete Struktur berichtet²

Rekonstruierte Äquatoren der Beugungsbilder von Cs_4Sn_9

Caroline Röhr

Metalle und Legierungen: Beispiel Zinn

¹B. Lehmann, C.R., Z. Kristallogr. 39, 100 (2019); ²M. Baitinger, Dissertation TU Darmstadt (2000). 🚊 🔊 🔍

$Rb_{12}Sn_{17}$ (VE/M=4.71)

$Rb_{12}Sn_{17} \longrightarrow 12Rb^+ + 2Sn_4^{4-} + Sn_9^{4-}$

Kristallsystem		orthorhombisch
Raumgruppe		$P2_12_12_1$, Nr. 19
Z		4
Gitter-	a	1504.1
konstanten	b	1539.3
[pm]	c	2147.8
<i>R</i> -Wert	R1	0.0813

C. Hoch, M. Wendorff, C.R. J. Alloys Comp. 361 206 (2003).

イロト イヨト イヨト イヨ

590

$A_8 \text{Sn}_{44} \Box_2$ (A=Rb, Cs) (VE/M=4.18)

J. Gallmeier, H. Schäfer, A. Weiss, Z. Naturforsch. 24b, 665-667 (1969); J.-T. Zhao, J. D. Corbett, Inorg. Chem. 33 5721 (1994); G. Frisch, C. Hoch, C.R., P. Zönnchen, K.-D. Becker, D. Niemeier, Z. Anorg. Allg. Chem. 629, 1661 (2003); + ...

Rb_8Sn_{44} : ¹¹⁹Sn-Mößbauer-Spektrum

G. Frisch, C. Hoch, C.R., P. Zönnchen, K.-D. Becker, D. Niemeier, Z. Anorg. Allo Chem. 629, 1661 (2003).

- 1 Einleitung: Intermetallische Phasen
- 2 Sn, elementar
- 3 Erinnerung: binäre Phasendiagrammme
- Omega Sn + Cu
- \odot Sn + Nb
- \odot Sn + Cs
- Zusammenfassung

Zusammenfassung

Allgemeines zu Metallen/Legierungen

- praktisch und technisch wichtige Verbindungsklasse
- Klassifizierung der Metalle (A1, A2, B1, B2), erlaubt auch grobe Gruppierung der Legierungstypen
- mit/ohne Phasenbreiten (Verbindungen?, Phasen?)
- keine einfachen Konzepte zur Erklärung von Strukturen
- Verständnis der chemischen Bindung schwierig
- ▶ geometrische \leftrightarrow elektronische Struktur \leftrightarrow physikalische Eigenschaften \mapsto Erklärungen mit aktueller FK-Theorie möglich

▶ Beispiel: Zinn und seine Legierungen

- \blacktriangleright S
n+viele B1/B2-Elemente \mapsto meist keine Verbindungsbildung
- ► Sn + A2 (Cu): HUME-ROTHERY-Phasen/Elektronenverbindungen (Bronze)
- ▶ Sn + A2 (Nb): FRANK-KASPER-Phasen, Nb₃Sn (Cr₃Si-Typ) als Supraleiter
- Sn + A1 (Cs): ZINTL-Phasen: einfache Erklärung von Zusammensetzung und Struktur, Halbleiter
 - Erdalkali/Lanthanoid-Stannide \mapsto häufig nicht mehr elektronenpräzise
 - ebenso Trielide (Gallide, Indide, Thallide)
- Literatur
 - ▶ Lehrbücher zur Strukturchemie (z.B. U. Müller: Anorganische Strukturchemie)
 - Volltext-Vorlesung Intermetallische Phasen

(wieder im SS25 als V-VL mit München+Regensburg)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

52 / 52

**** ! DANKE ! ****