Bandstrukturen I: LCAO-Ansatz Der Festkörper als Riesenmolekül

Vorlesung Anorganische Strukturchemie, WS 24/25

11.2024, C. Röhr

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III) Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung *k*-Raum-Darstellung, Bandstruktur Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III) Atomorbitale

Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

H-Atom

- BORN-OPPENHEIMER-Näherung
- ▶ ein (!) Elektron im (zeitunabhängigen) Potential eines H-Atomkerns
- Eigenwertproblem der Energie (SCHRÖDINGER-Gleichung)

$$\hat{H}\psi=E\psi$$

▶ zwei Anteile: kinetische und potentielle Energie des Elektrons

$$\hat{H} = \underbrace{-\frac{\hbar}{2m_e}\nabla^2}_{E_{\rm kin}} + \underbrace{U}_{E_{\rm pot}}$$

• mit
$$E_{\text{kin}} = \frac{1}{2}m_e v^2$$
 und $p = m_e v \mapsto E_{\text{kin}} = \frac{p^2}{2m_e}$ (klassisch)

bzw. mit
$$\hat{p} = i\hbar \frac{\delta}{\delta x} \mapsto$$

 $E_{\rm kin} = -\frac{\hbar}{2m_e} \nabla^2$ mit $\nabla^2 = \frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2} + \frac{\delta^2}{\delta z^2}$

▶ und $E_{\text{pot}} = U$ für das Elektron im COULOMB-Potential des Atomkerns der Kernladungszahl Z: (COULOMB-Anziehung) $U = -\frac{Ze^2}{4\pi\varepsilon_0r}$

Atomorbitale: Lösungen der Schrödinger-Gleichung (PC-II)

 \blacktriangleright Eigenenergien E_n

$$E_n \sim \frac{-Z^2}{2n^2}$$

• d.h. die Eigenenergien hängen nur von der Hauptquantenzahl *n* ab (*s*- und *p*-Zustände entartet)

Eigenfunktionen ψ_{n,l,m_l}

- kompliziert
- abhängig von den drei weiteren Quantenzahlen n, l und m_l
- physikalische Bedeutung: $\psi^2 \propto {\rm Aufenthaltswahrscheinlichkeit des Elektrons$
- ↓

H-Atomorbitale: Eigenfunktionen

- ► Veranschaulichung? \mapsto 4-dimensionale Darstellung $\psi = f(x, y, z)$ unmöglich!
- ▶ Transformation von ψ (kartesisch: x, y, z) ⇒ Polarkoordinaten (r, θ, ϕ)

•
$$x = r \sin \theta \cos \phi$$

•
$$y = r \sin \theta \sin \phi$$

•
$$z = r \cos \theta$$

 \blacktriangleright \mapsto Separation in Radius- und winkelabhängige Anteile:

$$\psi_{n,l,m_l} = NR_{n,l}(r)\chi_{l,m_l}(\theta,\phi)$$

► anschaulich: Rücktransformation $\chi_{l,m_l}(\theta,\phi) \Longrightarrow \chi_{l,m_l}(\frac{x}{r},\frac{y}{r},\frac{z}{r})$ \mapsto mathematisch \Downarrow

H-Atomorbitale: Eigenenergien und -funktionen

Quanten-	Orbital	Eigen-	normierte	normierte Winkelfunktion in	
zahlen	(chem.)	wert	Radialfunktion	sphärischen Koord.	kartesischen Koord.
$n \ l \ m_l$		E_n	$R_{n,l}(r)$	$\chi_{l,m_l}(\theta,\phi)$	$\chi_{l,m_l}(\frac{x}{r},\frac{y}{r},\frac{z}{r})$
100	1s	E_1	$\frac{\frac{2}{\sqrt{a_0^3}}e^{-\frac{r}{a_0}}}{\sqrt{a_0^3}}$	$\frac{1}{2\sqrt{\pi}}$	$\frac{1}{2\sqrt{\pi}}$
2 0 0	2s	$E_2 = \frac{E_1}{4}$	$\frac{1}{2\sqrt{2a_0^3}}(2-\frac{r}{a_0})e^{-\frac{r}{2a_0}}$	$\frac{1}{2\sqrt{\pi}}$	$\frac{1}{2\sqrt{\pi}}$
2 1 0	$2p_z$	$E_2 = \frac{E_1}{4}$	$\frac{\frac{1}{2\sqrt{6a_0^3}} \frac{r}{a_0} e^{-\frac{r}{2a_0}}}{r}$	$\frac{\sqrt{3}}{2\sqrt{\pi}}\cos\theta$	$\frac{\sqrt{3}}{2\sqrt{\pi}}\frac{z}{r}$
2 1 1	$2p_x$	$E_2 = \frac{E_1}{4}$	$\frac{\frac{1}{2\sqrt{6a_0^3}} \frac{r}{a_0} e^{-\frac{T}{2a_0}}}{\frac{r}{2a_0}}$	$\frac{\sqrt{3}}{2\sqrt{\pi}}\sin\theta\cos\phi$	$\frac{\sqrt{3}}{2\sqrt{\pi}}\frac{x}{r}$
$2\ 1\ -1$	$2p_y$	$E_2 = \frac{E_1}{4}$	$\frac{\frac{1}{2\sqrt{6a_0^3}} \frac{r}{a_0} e^{-\frac{r}{2a_0}}}{\frac{r}{2a_0}}$	$\frac{\sqrt{3}}{2\sqrt{\pi}}\sin\theta\sin\phi$	$\frac{\sqrt{3}}{2\sqrt{\pi}}\frac{y}{r}$
300	3 <i>s</i>	$E_3 = \frac{E_1}{9}$		$\frac{1}{2\sqrt{\pi}}$	$\frac{1}{2\sqrt{\pi}}$
$3\ 1\ 0$	$3p_z$	$E_3 = \frac{E_1}{9}$			s. bei $2p$
$3\ 2\ -1$	$3d_{xy}$	$E_3 = \frac{E_1}{9}$		$\sqrt{\frac{15}{4\pi}}\sin^2\theta\sin\phi\cos\phi$	$\sqrt{\frac{15}{4\pi}} \frac{xy}{r^2}$
$3\ 2\ 1$	$3d_{xz}$	$E_3 = \frac{E_1}{9}$		$\sqrt{\frac{15}{4\pi}}\sin\theta\cos\theta\cos\phi$	$\sqrt{\frac{15}{4\pi}} \frac{xz}{r^2}$
$3\ 2\ 0$	$3d_{yz}$	$E_3 = \frac{E_1}{9}$		$\sqrt{\frac{15}{4\pi}}\sin\theta\cos\theta\sin\phi$	$\sqrt{\frac{15}{4\pi}}\frac{yz}{r^2}$
$3\ 2\ 2$	$3d_{z^2}$	$E_3 = \frac{E_1}{9}$		$\sqrt{\frac{15}{4\pi}} 3\cos^2\theta - 1$	$\sqrt{\frac{15}{4\pi}} \frac{3z^2 - r^2}{r^2}$
$3\ 2\ -2$	$3d_{x^2-y^2}$	$E_3 = \frac{E_1}{9}$		$\sqrt{\frac{15}{4\pi}}\sin^2\theta\cos 2\phi$	$\sqrt{\frac{15}{4\pi}} \frac{x^2 - y^2}{r^2}$

Radialfunction $R_{n,l}(r)$ (graphisch)

Radiale Dichtefunktion $r^2 R_{n,l}^2(r)$ (graphisch)

Winkelabhängiger Teil $\chi_{l,m_l}(\theta,\phi)$ (Kugelflächenfunktionen)

- ▶ entscheidend für (kovalente) gerichtete chemische Bindung
- ▶ χ unabhängig von n, nur $f(l, m_l)$:
 - Atomorbitale (java-Applet, Falstad)
 - Seite mit einigen Orbitalen (auf ruby)
- \blacktriangleright vereinfachte graphische Darstellung (VZ von $\chi \oplus / \ominus$ farblich

gekennzeichnet)

 $s \ (l=0): \chi = \text{const.}$

- kugelsymmetrisch, da keine Winkelabhängigkeit
- Parität: g (inversionssymmetrisch)

 $p \ (l=1): \chi = f(\frac{x}{r}) \ \text{oder} \ f(\frac{y}{r}) \ \text{oder} \ f(\frac{z}{r}) \mapsto p_x, \, p_y, \, p_z$

- rotationssymmetrisch bzgl. kartesischer Koordinaten
- orthogonal zueinander (keine WW untereinander)
- Parität: u (bei i = $\overline{1}$ Umkehr des Vorzeichens von ψ)

$$d$$
 $(l=2): \chi = f(\frac{xy}{r^2})$ usw. $\mapsto d_{xy}$ usw.

- unterschiedliche Formen
- Parität: g (i-symmetrisch)

Nicht-H-Atome

- sehr viel komplizierter
- ▶ Problem: e^- - e^- -Wechselwirkung (Korrelation, Austausch)
- keine geschlossenen Lösungen
- div. Näherungen erforderlich

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III)

Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung, Bandstruktur

Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bände

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

Modell H_2^+

- ▶ Modell: H_2^+ (ein Elektron im Feld zweier Protonen)
- SCHRÖDINGER-Gleichung analog Atomproblem
- \blacktriangleright noch geschlossen lösbar
- \blacktriangleright Gleichungen für Eigenfunktionen ψ kompliziert
- Lösungsansatz (LCAO-Ansatz)
 - Zustände im Molekül (molekulare Wellenfunktion $\psi)$
 - aus Atomzuständen (atomare Wellenfunktionen $\phi)$ zusammengesetzt:

$$\psi = c_1 \phi_1 + c_2 \phi_2 = \sum_{\text{Atome}i} c_i \phi_i$$

- \blacktriangleright Lösung = Suche nach passenden Koeffizienten c_i
- \blacktriangleright häufig 'lösbar' aus Symmetrie
überlegung \Downarrow

H₂⁺: Lösung durch Symmetriebetrachtung

▶ für die Elektronendichte gilt:

$$\rho \sim \psi^2 = c_1^2 \phi_1^2 + c_2^2 \phi_2^2 + 2c_1 c_2 \phi_1 \phi_2$$

 \blacktriangleright Symmetrie
 $\mapsto \rho$ muss beim Vertauschen der AO 1 und 2 gleich bleiben

- ▶ nur möglich, wenn: $c_1 = \pm c_2$, d.h. nur zwei Lösungen (Bildung von SALCs)
 - bindend: $\psi_b \sim \phi_1 + \phi_2$ (für $c_1 = c_2$)
 - antibindend: $\psi_a \sim \phi_1 \phi_2$ (für $c_1 = -c_2$)
- ▶ ψ 's mit Symmetrie (Charaktertafel der PG, hier $D_{\infty h}$) erhältlich:

H_2^+ : Eigenenergien I

Berechnung mit Kenntnis der Wellenfunktion

- \blacktriangleright Einsetzen von ψ in Schrödinger-Gleichung $\hat{H}\psi=E\psi$
- $\blacktriangleright\,$ nach Multiplikation mit ψ^* und Integration über Raum $d\tau$

$$\int \psi^* \hat{H} \psi d\tau = \int \psi^* E \psi d\tau$$

E als Konstante vorziehen und nach E auflösen (!! Voraussetzung: E-unabhängige Eigenfunktionen!)

$$E = \frac{\int \psi^* \hat{H} \psi d\tau}{\int \psi^* \psi d\tau}$$

 \blacktriangleright Basis des Variationsverfahrens: Minimierung von E in Bezug auf die c_i s

H₂⁺: Eigenenergien II

Berechnung ohne Kenntnis der Wellenfunktion

- ▶ bei LCAO nach HÜCKEL: HAMILTON-Operator kann zerlegt werden in
 - $H_{11} = H_{22} = \int \phi_1 \hat{H} \phi_1 d\tau = \alpha = E_0$ (Coulomb-Integral, $\langle \phi_1 | H | \phi_1 \rangle$)
 - $H_{12} = H_{21} = \int \phi_1 \hat{H} \phi_2 d\tau = \beta$ (Austausch-Integral, $\langle \phi_1 | H | \phi_2 \rangle$)
- Säkulardeterminante (HÜCKEL-Determinante) muß verschwinden (sonst nur triviale Lösungen)

$$|H_{ij} - E\delta_{ij}| = 0$$

damit folgt:

$$\begin{vmatrix} \alpha - E & \beta \\ \beta & \alpha - E \end{vmatrix} = 0$$

quadratische Gleichung mit den Lösungen

•
$$E_b = \alpha + \beta$$

$$E_a = \alpha - \beta$$

Chemische Bindung

- ▶ Bindung = positive Interferenz der Wellenfunktionen
- \blacktriangleright Quantifizierung: Überlappungs
integral $S=\int \phi_i \phi_j d\tau$
 - $S = \oplus$: positive Überlappung, bindend
 - S = 0: nicht-bindend
 - $S = \ominus$ negative Überlappung, antibindend

Bandstrukturen I: LCAO-Ansatz 1-dimensionaler Fall: Unendliche Ketten

>)-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III) Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung *k*-Raum-Darstellung, Bandstruktur Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

Bandstrukturen I: LCAO-Ansatz - 1-dimensionaler Fall: Unendliche Ketten - Realraumdarstellung

> D-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III) Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bänder

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

Bandstrukturen I: LCAO-Ansatz - 1-dimensionaler Fall: Unendliche Ketten - Realraumdarstellung

Ketten als unendlich große Ringe

▶ immer größere Ringe, z.B. von 1*s*-AO

- 1:2:1 für 41s
- 1:2:2:1 für 6 1s (vgl. Benzol bei p_z)
- .
- ∞ große Ringe

Bandstrukturen I: LCAO-Ansatz - 1-dimensionaler Fall: Unendliche Ketten - Realraumdarstellung

Ketten als unendlich große Ringe (Forts.)

▶ günstigster Zustand (voll bindend)

- volle Symmetrie der Punktgruppe (Γ -Punkt)
- energetisch 2 β (2 Bindungen!) unter α
- totale positive Überlappung der ϕ s aller AO
- ungünstigster Zustand (voll antibindend)
 - von AO zu AO wechselndes Vorzeichen von ϕ
 - energetisch 2 β oberhalb von α
 - zwischen benachbarten AO immer antibindend
- \blacktriangleright dazwischen
 - ... immer mehr Zustände ... bis zu unendlich vielen (Kontinuum)
 - <u>keine homogene</u> Verteilung der Niveaus (an den 'Rändern' höhere Niveau-Dichte)

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III) Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

... übersetzt in die 'Sprache' der FK-Physik

DOS: Density of States

- im FK nicht jedes einzelne MO wichtig, da ∞ -viele
- DOS (Zustandsdichte): Zahl der Zustände im E-Bereich
 - bindend: DOS hoch
 - nichtbindend: DOS am niedrigsten
 - antibindend: DOS hoch

COOP: Crystal Orbital Overlap Population

• Dichte bindender/antibindender Zustände

LCAO-Beschreibung

Voraussetzung

- translationssymmetrische Anordnung der Atomorbitale
- Gitterkonstante/Gittervektor: a (1-dimensional)
- a enthält die gesamte Symmetrie-Information (vgl. Lsg. bei H_2^+ !)
- Prinzip, Ziel
 - Bildung der MOs als SALC von AO (analog Moleküle)

$$\psi = \sum_{n} c_n \phi_n$$

- ... wie bei Molekülen auch ...
- statt freier Wahl der $c_n \mapsto$ an Symmetrie (hier Translation) adaptiert !

▶ Lösung \mapsto BLOCH^{*}-Funktionen

$$\psi_k = \sum_n \underbrace{e^{ikna}}_{c's} \phi_n$$

 \blacktriangleright ?? $\Downarrow k$??

^{*:} Felix Bloch (1905-1983)

Ableitung und Erklärung

cos-Funktion beschreibt den Vorzeichenwechsel (VZW):

$$y = \cos \frac{2\pi}{\lambda} x$$

- AO müssen nach Translation (Symmetrie!) aufeinander zu liegen kommen
- $\blacktriangleright \mapsto x \mod ganzzahliges Vielfaches von a sein$

$$x = na$$

damit:

$$y = \cos \frac{2\pi}{\lambda} na$$

• Wertebereich für λ :

Ableitung und Erklärung (Forts.)

• Wertebereich für λ :

 \blacktriangleright mit Wellenvektor k

$$k = \frac{2\pi}{\lambda}$$

$$\blacktriangleright \text{ folgt: } y = \cos kna$$

• oder allgemeiner: $y = e^{ikna}$

Funktion, die den Verlauf der Koeffizienten c_n beschreibt (q.e.d.)

▶ für die Gesamtwellenfunktion:

$$\psi_k = \sum_n e^{ikna} \phi_n$$

• Wertebereich für k (aus dem von λ oben)

• erlaubter Bereich für k = 1. BRILLOUIN*-Zone (1. BZ) = reziproke Linie

*: Léon Nicolas Brillouin (1889-1969)

Bedeutung von k

λ bzw. Wellenzahl (k = ^{2π}/_λ) beschreiben Vorzeichenwechsel
 Wertebereich für k (1. BZ)

- bindend: $\lambda = \infty$; k=0 (Γ -Punkt, maximale Symmetrie)
- antibindend: $\lambda = 2a$; $k = \frac{\pi}{a}$ ('BRILLOUIN-Zonen-Rand')
- nichtbindend: $\lambda = 4a$

▶ direkt gekoppelt mit Impuls: $p = \hbar k$

- **•** Bandstruktur: E = f(k)
- ▶ 1 Band = 1 s-AO/Elementarzelle = $2 e^{-}/EZ$

Konkretes Beispiel: 1s-Atomkette

(mit: β : Austauschintegral; α : COULOMB-Integral)

• damit: $k \sim \arccos(E)$

$$k = 0 \mapsto E = \alpha + 2\beta$$

$$k = \frac{\pi}{a} \mapsto E = \alpha - 2\beta$$

Bandstrukturen I: LCAO-Ansatz

-1-dimensionaler Fall: Unendliche Ketten

Bandverläufe und -dispersion

▶ maximale Steigung des Bandes bei $\frac{\pi}{2a}$

- ▶ Bandverlauf s-AO: von k = 0 ($\lambda = \infty$) nach $k = \frac{\pi}{a}$ ($\lambda = 2a$) steigend
- ► Dispersion/Bandbreite = f(Überlappung)(HÜCKEL: $E_k = \alpha + 2\beta \cos ka$)
 - größere WW zwischen AO
 - Austauschintegral β groß
 - DOS mit größerer E-Breite
 - Bänder mit größerer Dispersion
 - z.B. Variation von *a*:
 - ▶ $a \operatorname{groß} \mapsto \cos ka$ klein \mapsto kleine Bandbreite
 - ▶ $a \text{ klein} \mapsto \text{Dispersion/Bandbreite groß}$

Bandverläufe (s- und p-Bänder)

Bandverlauf = f(Symmetrie der AO relativ zur Gesamtsymmetrie)

- ► Vergleich
 - s und p_x ohne VZW bindend ($\lambda = \infty, k = 0$)
 - $p_z \mapsto$ bindend bei maximalem VZW ($\lambda = 2a, k = \frac{\pi}{a}$)

Bandverläufe, allgemein

Bandstrukturen I: LCAO-Ansatz └-1-dimensionaler Fall: Unendliche Ketten └-Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III

Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung *k*-Raum-Darstellung, Bandstruktur

Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

Bandstrukturen I: LCAO-Ansatz ↓ 1-dimensionaler Fall: Unendliche Ketten └ Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

PEIERLS-Verzerrung

für H-Atom-Kette sofort ersichtlich

- \blacktriangleright bei Halbbesetzung des 1*s*-Bandes
- \blacktriangleright \mapsto Verzerrung der Kette zu H₂-Molekülen energetisch bevorzugt
- PEIERLS*-Verzerrung
 - Gitterinstabilitäten bei partieller Besetzung bestimmter Bänder
 - 'JAHN-TELLER-Effekt' des Festkörpers
- ▶ Problem: durch Verzerrung Änderung der Translationseinheit (EZ)

^{*:} Rudolf Peierls (1905-1995)

Falten von Bändern

unverzerrt (oben)

- Bandstruktur in k, einfache Gitterkonstante a
- Beschreibung mit doppelter Gitterkonstante (b = 2a)
- doppelt soviele AO in der $EZ \mapsto$ doppelte Zahl von Bändern
- E k-Plot: da $b = 2a \mapsto k$ nur bis $\frac{\pi}{b} = \frac{\pi}{2a}$
- entspricht 'Zurückfalten' des Bandes $\mapsto 2$ Bänder
- Zellvergrößerung = Verkleinerung der BZ

Falten von Bändern

▶ unten (verzerrt)

- verzerrte 1*s* H-Kette
- Beschreibung nur in b (= 2a) möglich (2 Bänder, 2 AO/EZ)
- bei halber Besetzung des Bandes:
 → günstige/ungünstige VZ-Verteilung → Bandlücke
- 2 neue Bänder:

Falten von Bändern

• unteres Band (H₂, σ -bindend)

• von Γ steigend

oder d_{z^2}

• MO aus zwei 1s AO mit gleichem VZ: Symmetrie wie s

- von Γ fallend
- MO aus zwei 1s AO mit unterschiedlichen VZ:

Symmetrie wie p_z

Bandstrukturen I: LCAO-Ansatz ↓ 1-dimensionaler Fall: Unendliche Ketten ↓ Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

PEIERLS-Verzerrung: Zusammenfassung

- ▶ Gitterinstabilitäten durch unvollständige Besetzung bestimmter Bänder
- ▶ Öffnung einer Bandlücke durch Strukturverzerrung
- \blacktriangleright Beschreibung in vergrößerter EZ \mapsto Falten von Bändern

Bandstrukturen I: LCAO-Ansatz

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III)

Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung, Bandstruktur Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

Bandstrukturen I: LCAO-Ansatz 2-dimensionaler Fall: Ebene Netze Grundsätzliches

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III)

Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung, Bandstruktur Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

2-dimensionaler Fall

- \blacktriangleright Annäherung an 'echte' Festkörper = 3-Dimensionen
- \blacktriangleright analog zur H-Atome Kette \mapsto quadratisches Netz aus H-Atomen
- \blacktriangleright jeweils aus *s* und *p*-Orbitalen
- ▶ wie bei H-Atom-Kette:
 - Überlegungen im Realraum (Energien, BLOCH-Funktionen)
 - $k \mapsto \text{Vektor im 2-Dimensionalen} \mapsto \text{Flächendarstellungen}(k_{x,y})$
 - Bänder sind Flächen in k
 - WIGNER-SEITZ-Zellen = 1. BZ = erlaubte Bereiche für k
 - E_F in $k \mapsto \text{Fermi-Linie}$
- einfachstes Modell: Squarium
- ▶ reale Struktur: Graphit

Bandstrukturen I: LCAO-Ansatz 2-dimensionaler Fall: Ebene Netze Quadratische Netze (Squarium)

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III)

Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung, Bandstruktur Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium)

Graphit

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

Bandstrukturen I: LCAO-Ansatz 2-dimensionaler Fall: Ebene Netze Quadratische Netze (Squarium)

s-AO im quadratischen Gitter, Realraum

- $\blacktriangleright \text{ Struktur } a = b$
- ▶ EZ enthält $4/4 = 1 \text{ AO} \mapsto 1 \text{ Band/AO}$

- Energien/Bandverläufe (anschaulich)
 - 1. am günstigsten: alle ϕ mit gleichem VZ (maximal bindend, Bandunterkante)
 - 2. ungünstigster Zustand: in alle Richtungen wechselnde VZ (maximal antibindend, Bandoberkante)
 - 3. weitere ausgezeichnete Zustände:
 - ▶ in 1. Richtung alle VZ gleich, in 2. Richtung stets wechselnd
 - \blacktriangleright im quadratischen Gitter *E*-entartet, bei Vertauschung von *x* und *y*

$s\mbox{-}{\rm AO}$ im quadratischen Gitter, $k\mbox{-}{\rm Raum}$

BLOCH-Funktion beschreibt VZW

▶ k ist Vektor mit den Komponenten $k_x = \frac{2\pi}{\lambda_x}$ und $k_y = \frac{2\pi}{\lambda_y}$

▶ für die drei Spezialfälle (Punkte)

$$\begin{array}{l} \Gamma: \ \lambda_x = \lambda_y = \infty \mapsto k_x = k_y = 0\\ = \mbox{Nullpunkt der } k\mbox{-Fläche}\\ \mbox{M:} \ \lambda_x = \lambda_y = 2a = 2b \mapsto k_x = k_y = \frac{\pi}{a} = \frac{\pi}{b}\\ k_x \ \mbox{und } k_y \ \mbox{maximal}\\ \mbox{X:} \ k_x = \frac{\pi}{a} \ \mbox{und } k_y = 0 \end{array}$$

Bandstrukturen I: LCAO-Ansatz 2-dimensionaler Fall: Ebene Netze Quadratische Netze (Squarium)

Bandstruktur

- ► E-Fläche zwischen k = (0,0) und $(\frac{\pi}{a}, \frac{\pi}{b})$ (BZ)
- ▶ analog HÜCKEL für 1s der Kette:

 $f(x,y) = -(\cos(x) + \cos(y))$ (zwischen $-\pi$ und $+\pi$ in x, y)

Bandstruktur entlang eines k-Pfads

komplette Bandstruktur

- ▶ k-Fläche: Symmetrie des reziproken Raums (PG + i = Lauesymmetrie)
- ▶ irreduzibler Teil der BZ (IBZ)

Bandstrukturen I: LCAO-Ansatz 2-dimensionaler Fall: Ebene Netze Quadratische Netze (Squarium)

Squarium: s- und p-Bänder

Bandstrukturen I: LCAO-Ansatz - 2-dimensionaler Fall: Ebene Netze - Graphit

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III)

Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung, Bandstruktur Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) **Graphit**

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

Bandstrukturen I: LCAO-Ansatz 2-dimensionaler Fall: Ebene Netze Graphit

Graphit (*p*-AO \perp zur Schicht)

Bandstrukturen I: LCAO-Ansatz 2-dimensionaler Fall: Ebene Netze Graphit

Graphit

FP-LAPW-Rechnung, 1000 k-Punkte, PBE-GGA, Wien2k, C(1)- p_z FAT-band

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III)

Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung, Bandstruktur Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III)

Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung, Bandstruktur Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium) Beispiel: α -Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

3-dimensionaler Fall

- reale Festkörper
- ▶ $k \mapsto \text{Vektor in 3D}$
- \blacktriangleright \mapsto Plot $E \sim k_{x,y,z}$ unmöglich
- \blacktriangleright \mapsto Projektionen entlang ausgezeichneter Richtungen ('Spaghetti'-Plots)
- \blacktriangleright BRILLOUIN-Zone (WIGNER-SEITZ-Zelle, erlaubte Bereiche für k) ist dreidimensionaler Körper
- \blacktriangleright E_F in $k \mapsto \text{Fermi-}\underline{\text{Fläche}}$
- ▶ einfachstes Modell: Cubium
- ▶ reale Struktur: α -Po \mapsto As, Sb, Se (PEIERLS-verzerrt)

Bandstrukturen I: LCAO-Ansatz - 3-dimensionaler Fall - Kubisch primitives Gitter (Cubium)

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III)

Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung, Bandstruktur Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiel: α -Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

Kubisch primitives Gitter (Cubium)

- \blacktriangleright Struktur: α -Po-Typ, Cubium, kubisch primitives Gitter
- ▶ 1 AO/EZ \mapsto 1 Band/Orbital des Atoms
- \triangleright BZ = Würfel
- \blacktriangleright spezielle Punkte im k-Raum:
 - Γ : = Ursprung (Zonenzentrum)
 - X: $(0,0,\frac{1}{2})\frac{2\pi}{a}$
 - (d.h. maximaler VZW entlang einer der Achsen)
 - K: $(0, \frac{1}{2}, \frac{1}{2})\frac{2\pi}{a}$
 - (d.h. max. VZW entlang einer Flächendiagonalen
 - $\begin{array}{l} M: \ (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \frac{2\pi}{a} \\ (\text{d.h. max. VZW entlang Raumdiagonalen}) \end{array}$

Bandstrukturen I: LCAO-Ansatz - 3-dimensionaler Fall - Kubisch primitives Gitter (Cubium)

LCAO von s-AO

- $\Gamma:$ alle VZ gleich \mapsto günstigster Fall: $6\times$ bindende Nachbarn
- M: maximaler VZW entlang [111]
 - \mapsto damit auch maximaler VZW in x, y und z
 - \mapsto ungünstigster Fall: 6× antibindend
- X: nur in eine Richtung (X) maximale VZW
 - \mapsto bindende WW in die beiden anderen Richtungen
 - \mapsto energetisch noch günstig: 4× b., 2× a.b.
- K: in 2 Richtungen max. VZW \mapsto ingesamt antibindend: $2 \times$ b., $4 \times$ a.b.

Bandstrukturen I: LCAO-Ansatz - 3-dimensionaler Fall - Kubisch primitives Gitter (Cubium)

LCAO von p-AO

▶ ohne π -WW !

 \blacktriangleright spezielle Punkte und Pfade im k-Raum:

- Γ : alle mit gleichem VZ \mapsto nur a.b. WW
- $\Gamma \Rightarrow X: \mapsto \text{in } x \text{ mehr VZW}$
 - $\mapsto p_x$ Bänder fallen von Γ nach X
 - $\mapsto p_y$ und p_z bleiben gleich (VZ egal, da keine WW)
- $\Gamma \Rightarrow M: (xxx): \mapsto$ in alle Richtungen mehr VZW \mapsto alle Bänder fallen
 - $M\colon$ für alle $p\text{-}\mathrm{AO}$ bindende WW
- $M \Rightarrow K: (xx0): \mapsto \text{ in } z \text{ wieder weniger VZW}$ $\mapsto p_z \text{ steigt energetisch}; \mapsto p_x \text{ und } p_y \text{ bleiben gleich}$

Bandstrukturen I: LCAO-Ansatz → 3-dimensionaler Fall → Beispiel: α-Po und Stabilität von P, As, Se

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III)

Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung, Bandstruktur Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

Beispiel: α -Po und Stabilität von P, As, Se

- Strukturstabilisierung analog H-1s-Kette im 1D
 - PEIERLS-Verzerrung, Bildung von H₂, Zellvergrösserung
 - Entartung bei Halbbesetzung des Bandes aufgehoben ('Falten' des Bandes)
 - Bandlücke
 - *E*-Gewinn für System
- ▶ analog in 3D ausgehend von α -Po \mapsto Verzerrungsvarianten
 - $s^2 p^3$: P_{schwarz} und As_{grau} (CN 3+3)

- $s^2 p^4$: Se (CN 2+4)
- insgesamt 36 Möglichkeiten der Strukturverzerrung

Bandstrukturen I: LCAO-Ansatz → 3-dimensionaler Fall → Beispiel: α-Po und Stabilität von P, As, Se

Arsen

- ▶ e^- -Konfiguration: s^2p^3
- ▶ 2 Atome/EZ \mapsto gefaltete Bänder
- ▶ 2 *s*-Bänder voll besetzt = nichtbindend
- ▶ p jeweils mit 1 e^- besetzt \mapsto 3 Bänder unter E_F
- \blacktriangleright Verzerrung entlang xxx
- (Pseudo)Bandlücke (vgl. H₂), dadurch energetisch günstigere besetzte Zustände

FP-LAPW-Rechnung, 1000 k-Punkte, PBE-GGA, Wien2k, As-s FAT-bands

0-dimensionaler Fall: Atome und Moleküle (Wdh. PC-II/III)

Atomorbitale Molekülorbitale

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung, Bandstruktur Gitterinstabilitäten, PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze (Squarium) Graphit

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiel: α-Po und Stabilität von P, As, Se

Zusammenfassung und Literatur

Zusammenfassung

- ▶ Wdh. AO, MOs mit LCAO (Symmetrie nützlich)
- \blacktriangleright Translation \mapsto Bildung von BLOCH-Summen \mapsto $k\text{-}\textsc{Abh}{\ddot{a}}\textsc{ngigkeit}$ von ψ
- ▶ Bandstruktur, DOS, COOP (mit HÜCKEL-Parametern quantifizierbar)
- \blacktriangleright Topologie der Bänder \Leftrightarrow Symmetrie der AO und von deren WW
- \blacktriangleright PEIERLS-Verzerrung erfordert Zellvergrößerung \mapsto 'Zurückfalten' der Bänder
- ▶ 1D 2D 3D: k-Pfade, Bandverläufe nach Symmetrie der AO
- As, Se etc. Strukturen aus α-Po, elektronisch bedingte Strukturverzerrung

- R. Hoffmann: Begegnung von Chemie und Physik im Festkörper Angewandte Chemie 99, 871 (1987).
- R. Hoffmann: Solids and Surfaces: A Chemist's View of Bonding in Extended Structures, Wiley VCH.