# 5.1. Chloralkali-Elektrolyse (technische Elektrolysen) 5. Basen



http://ruby.chemie.uni-freiburg.de/Vorlesung/Seminare/chloralkalielektrolyse\_tac.pdf

Caroline Röhr, Burkhard Butschke

Vorlesung: Technische Anorganische Chemie, WS 24/25

## Inhalt (Prozess- und Stoff-Auswahl)

- Einleitung
- @ Gase
  - $\bullet$  Edelgase,  $\mathrm{N}_2,\,\mathrm{O}_2$  (Luftzerlegung, Rektifikation)  $\checkmark$
  - Ammoniak (inkl. Wasserstoff; Gasreaktion)
- Salze
  - KCl (Feststoffprozessierung ohne Stoffumwandlung)  $\checkmark$
  - Na<sub>2</sub>CO<sub>3</sub> (reziproke Umsetzung) ✓
    - Phosphate (Neutralisations- und Verdrängungsreaktionen)
  - Chlorate und Perchlorate (elektrochemische Oxidation)
- 4 Säuren
  - Schwefelsäure (über Gasreaktionen)
  - Essigsäure (homogene Katalyse)
  - Phosphorsäure (durch Verdrängungsreaktionen)
  - Salpetersäure
- 6 Basen
  - Chloralkali-Elektrolyse (technische Elektrolyse)
- 6 Metalle
  - Eisen, Stahl
  - Kupfer
  - Aluminium
- 7 Weitere Anorganische Grund- und Wertstoffe
  - Zementklinker, Gläser, Düngemittel, Hochtemperaturwerkstoffe, Explosivstoffe,

- Einleitung
- 2 Vorbehandlungen der Sole
- $\ensuremath{\mathfrak{g}}$  ① Diaphragma-Verfahren
- 4 2 Amalgam-Verfahren
- **6** 3 Membran-Verfahren
- 6 Vergleich der Verfahren
- @ Eigenschaften, Produktionszahlen und Verwendung der Produkte
- 8 Literatur

- 1 Einleitung
- 2 Vorbehandlungen der Sole
- 3 ① Diaphragma-Verfahren
- ② Amalgam-Verfahren
- **5** 3 Membran-Verfahren
- 6 Vergleich der Verfahren
- @ Eigenschaften, Produktionszahlen und Verwendung der Produkte
- S Literatur

## Einleitung: NaOH- (und Cl<sub>2</sub>-) Produktion

➤ NaCl und Folgeprodukte



- ► Historisches
- <1890 Kaustifizierung von Soda (NaOH = 'caustic soda')

$$Na_2CO_3 + Ca(OH)_2 \longrightarrow 2NaOH + CaCO_3$$

>1890 Diaphragma- und Amalgamverfahren, elektrochemische Gewinnung

$$NaCl + H_2O \longrightarrow NaOH + \frac{1}{2}H_2 + \frac{1}{2}Cl_2$$

- >1970 Membran-Verfahren
  - Koppel<br/>produkte: 1 t Cl $_2 \leftrightarrow$  1.13 t NaOH = 315 m³ <br/>  $\rm H_2$
  - erste und bis heute wichtige grosstechnische (wässrige) Elektrolyse

## Prinzip der Chloralkali-Elektrolyse

- ► Elektrolyse einer wässrigen NaCl-Lösung
- Gesamtreaktion

$$NaCl + H_2O \longrightarrow NaOH + \frac{1}{2}H_2 + \frac{1}{2}Cl_2$$

► Teilreaktionen:

$$\begin{array}{|c|c|c|c|}\hline K & 2H_2O + 2e^- \longrightarrow H_2 + 2OH^-\\\hline A & Cl^- \longrightarrow \frac{1}{2}Cl_2 + e^-\\\hline \end{array}$$

- ▶ Trennung von Anionen- und Kationen-Raum erforderlich da:
  - H<sub>2</sub> + Cl<sub>2</sub> = Chlorknallgas (!)
  - $\text{Cl}_2^2 + 2\text{OH}^- \longrightarrow \text{Cl}^- + \underbrace{\text{OCl}^-}_{} + \text{H}_2\text{O} \text{ (Disproportionierung)}$

Hypochlorit

- → damit verbunden weitere Nebenreaktionen:
  - elektrochemische Chlorat-Bildung, A

$$ClO^- + 4OH^- \longrightarrow ClO_3^- + 2H_2O + 4e^-$$

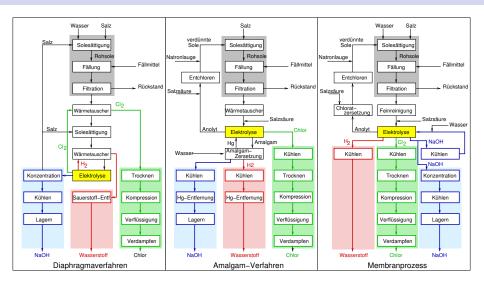
chemische Chlorat-Bildung:

$$3\text{ClO}^- \longrightarrow \text{ClO}_3^- + 2\text{Cl}^-$$

#### Elektrochemie (PC)

- ► Gesamtreaktion: NaCl +  $H_2O \longrightarrow NaOH + \frac{1}{2}H_2 + \frac{1}{2}Cl_2$ ;  $\Delta H$ =217.9 kJ/mol
- ► Redoxpotentiale
  - A  $Cl^- \longrightarrow \frac{1}{2}Cl_2 + e^- : E^{\oplus} = +1.358 \text{ V}; \text{ real: } E = +1.248 \text{ V}$
  - A  $2OH^- \longrightarrow \frac{1}{2}O_2 + H_2O + 2e^-$ :  $E^{\oplus} = +0.4 \text{ V}$ ; real: E = +1.3 V
  - K  $2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$ :  $E^{\Leftrightarrow} = 0$  V; real: E = -1.02 V (pH groß!)
  - K Na<sup>+</sup> + e<sup>-</sup> + xHg  $\longrightarrow$  NaHg<sub>x</sub>:  $E^{\oplus} = -1.9$  V; real: E = -1.85 V
- $\blacktriangleright$  Uberspannungen (<br/>  $\eta,$ bis zu 1 V) und reale Potentiale, abhängig vom
  - NaCl-Konzentration, pH-Wert
  - Fremdionen (Übergangsmetalle W, Mo, Fe, V usw.)
  - Temperatur
  - Stromdichten
  - Elektrodenmaterial
- ► Elektrodenmaterialien
  - A hohe Überspannung für O<sub>2</sub>-Bildung an Graphit (früher) oder Edelmetallbeschichtete Ti-Bleche (heute für alle Verfahren)
  - $\mathbbm{K}$  Hg (Amalgamverfahren:  $\mathbbm{H}_2\text{-Bildung}$ unterdrückt); Membranverfahren: Ni
- ightharpoonup minimale Potentiale  $\epsilon$  (real ca. + 1 V)
  - Diaphragma-Verfahren:  $\epsilon = 2.27 \text{ V}$
  - Amalgam-Verfahren:  $\epsilon = 3.1 \text{ V}$



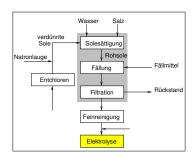

# Verfahren (Übersicht)

- 1 Diaphragma-Verfahren (Griesheim-Zelle)
  - ältestes Verfahren, seit 1885 im Einsatz
  - letzte zugelassene Anwendung von Chrysotil-Asbest
  - keine Neuanlagen, Europa 2016: 13.9 %
- 2 Amalgam-Verfahren (Castner-Kellner-Verfahren)
  - seit 1892 im Einsatz
  - 1987 Verbot des Verfahrens in Japan
  - 2003 USA: < 10 %; Europa: ca. 40 %
  - 2016 Europa: 17.4 %
- 17.12.2017 Abschaltung der Anlagen (zur Chlor-Produktion) in Europa
  - 2025 Minamata Convention: 'Mercury-cell chlor-alkali production is to be phased out' (Mitgliedsländer und Umsetzung s. https://minamataconvention.org)
  - 3 Membran-Verfahren
  - $>1970\,$  für alle Neuanlagen verwendet

# Cl<sub>2</sub>/NaOH-Produktion: Entwicklung der Prozesse und Tonagen

- ► Entwicklung der Anteile der drei Verfahren (nur Europa!) Grafik für 2024 (S. 14)
  - 1996 Amalgam: 64 %; Membran: 11 %; 24 % Diaphragma
  - 2000 Amalgam: 54 %; Membran: 21 %; 23 % Diaphragma
  - 2006 Amalgam: ca. 43 %
  - 2011 Amalgam: 32 %; Membran: 51.5 %; 14 % Diaphragma
  - 2016 Amalgam: 17.4 %; Membran: 66 %; 13.9 % Diaphragma
- 11.12.2017 Verbot des Amalgamverfahrens in Europa (Umsetzung Minamata Convention, s.u.)
  - $2025\,$  Diaphragma-Verfahren noch bei 8.4 %, aber Asbest-freie Membranen
  - ► NaOH-Produktion (Welt)
    - $1950 \ 5.0 \cdot 10^6 \ t/a$
    - $1975 \ 25.2 \cdot 10^6 \ t/a$
    - $1995 \ 45 \cdot 10^6 \ t/a$
    - 2016  $72 \cdot 10^6$  t/a (45 % China, 21 % USA)
    - 2023 50 · 10<sup>6</sup> t/a (D: 5 %; Europa: 15 %)
  - ► Cl<sub>2</sub>-Produktion
    - seit 2021 deutlich fallender Bedarf
    - Produktionszahlen (für 2023)
      - Weltjahresproduktion 65 10<sup>6</sup> t
      - Europa: 2 351 10<sup>3</sup> t
      - Deutschland: 7 289 10<sup>3</sup> t
    - Grafik für 2024 (S. 12)

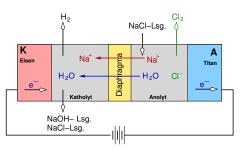
# Gegenüberstellung der Verfahrensschritte




- Einleitung
- 2 Vorbehandlungen der Sole
- 3 ① Diaphragma-Verfahren
- ② Amalgam-Verfahren
- **5** 3 Membran-Verfahren
- 6 Vergleich der Verfahren
- @ Eigenschaften, Produktionszahlen und Verwendung der Produkte
- S Literatur

# Gewinnung und Vorbehandlung der Sole

- ► Sole: gesättigt: 320 g NaCl/l
- meist aus festem Steinsalz hergestellt, wg. Nachkonzentration im Kreisprozeß
- ▶ Vorreinigung der Sole: Entfernung von


  - Ti, Fe, W ('Herdbildner': Verändern die Elektroden-Überspannungen)
- ► Fällungen mit NaOH, Na<sub>2</sub>CO<sub>3</sub>
- ► Sulfat als BaSO<sub>4</sub> oder Gips
- ► Klären und Filtrieren (Sandfilter)
- ➤ Feinreinigung über Ionenaustauscher (nur Membranverfahren)
- ggf. Vorwärmung der Sole
   (z.B. mit H<sub>2</sub>/Cl<sub>2</sub>-Gas aus Elektrolyse)



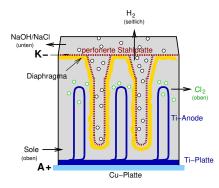
Reinigungsschritte vor der Elektrolyse

- Einleitung
- 2 Vorbehandlungen der Sole
- $\textcircled{3} \ \textcircled{1} \ \text{Diaphragma-Verfahren}$
- ② Amalgam-Verfahren
- **5** 3 Membran-Verfahren
- 6 Vergleich der Verfahren
- @ Eigenschaften, Produktionszahlen und Verwendung der Produkte
- S Literatur

# ① Diaphragma-Verfahren: Prinzip



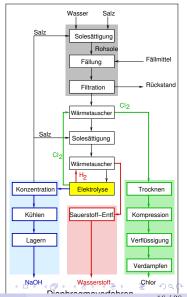
- ▶ Diaphragma aus Weiss-Asbest: Na<sup>+</sup>und H<sub>2</sub>O-durchlässig
- ► A früher Graphit, heute Ti-Blech (O<sub>2</sub>-Abscheidung gehemmt)
- ► K Eisen oder Stahl
- ► Katholyt: 190 g/l NaCl und 130 g/l NaOH
- $T = 90 \, ^{\circ}\text{C}; U = 3.5 4.2 \, \text{V}$


#### Betrieb

- ► Salzlösung in Anodenraum
- ➤ Verarmung an Cl<sup>-</sup> durch Anoden-Reaktion
- Dünnsole strömt durch Diaphragma in Kathodenraum
- ▶ Vermischung mit gebildeter NaOH
- Rückvermischung der NaOH zur Anode durch Strömung vermeiden (Chloratbildung, Sauerstoffabscheidung)
- ► Elektrolyse nur bis zu geringen NaOH-Konzentrationen möglich

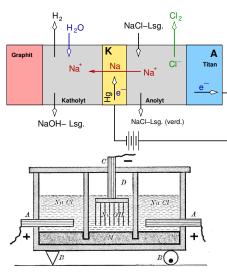
#### ① Diaphragma-Verfahren: Elektrolysezelle

#### Elektrolysezelle


- Titan/Stahl-Elektroden
- Elektrodenabstände: 20 mm
- verschiedene Bauarten (z.B. HOOKER S-Zellen und 2. Foto)
- typische Stromdichte: 2.5 kA/m² (schlechte Raum-Zeit-Ausbeute)
- ► Asbest-Diaphragma
  - Asbestpapier oder Asbestfasern, auf perforiertes Kathodenmaterial (Fe) aufgesaugt
  - geringer elektrischer Widerstand
  - säure- und alkalibeständig
  - auch für Cl<sup>-</sup> und OH<sup>-</sup> durchlässig
- auch Asbest-freie Ersatzstoffe



Aufsicht auf eine monopolare Hooker S-Zelle


## ① Diaphragma-Verfahren (Forts.)

- Rohprodukte der Elektrolyse
  - NaOH: 130-150 g/l (ca. 15 %-ig)
  - NaCl: 160-210 g/l
  - NaClO<sub>3</sub>: 0.05-0.25 g/l
- nachgeschaltete Eindampfprozesse
  - hoher NaCl-Gehalt
  - Eindampfen  $\mapsto$  zuerst NaCl-Abscheidung (schlechte Löslichkeit von NaCl in NaOH, z.B. 50 %-Lauge nur 2 %-NaCl)
  - NaCl abzentrifugieren und einspeisen (Salzkreislauf)
- zusammenfassend.
  - ⊖ Cl<sub>2</sub> ist O<sub>2</sub>-haltig
  - → NaOH verdiinnt.
  - → NaCl-Verunreinigung hoch
  - → Asbest als Diaphragma
  - hoher Energieverbrauch ca. 3 200 kWh/t NaOH



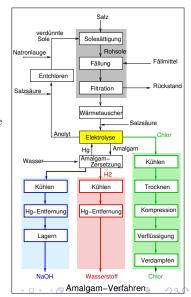
- Einleitung
- 2 Vorbehandlungen der Sole
- 3 ① Diaphragma-Verfahren
- 4 ② Amalgam-Verfahren
- **6** 3 Membran-Verfahren
- 6 Vergleich der Verfahren
- @ Eigenschaften, Produktionszahlen und Verwendung der Produkte
- S Literatur

#### ② Amalgam-Verfahren: Prinzip



Skizze einer Einfachstanlage

- ► A s. Diaphragma-Verfahren
- ► K elementares Hg
- Ausnutzung der hohen Überspannung von H<sub>2</sub> an Hg (Na/H-Potentiale vertauscht)
- ► Elektrolysezelle:  $2NaCl \longrightarrow 2Na_{Hg} + Cl_2$
- ▶ separater Amalgamabscheider:  $2\text{Na} + 2\text{H}_2\text{O} \longrightarrow 2\text{NaOH} + \text{H}_2$
- ▶ Cl<sub>2</sub>-freie Natronlauge
- ► NaCl-freie (< 0.006 Gew.-% NaCl) bis 50%-ige Natronlauge

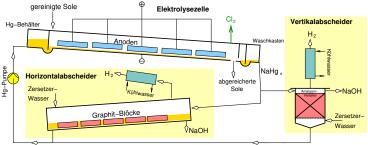

#### ② Amalgam-Verfahren: Elektrolyse-Zelle

#### ▶ Elektrolyse

- T = 80 °C, U = 3.5-4.5 V (höher als bei anderen Verfahren)
- $I = 300 \text{ kA bzw. } 8\text{-}15 \text{ kA/m}^2$
- K elementares Hg
- A 10 cm dicke gelochte Graphitplatten bzw. mit Edelmetallen beschichtetes Ti
- $\bullet$ leicht geneigter (15 mm/m) Stahlboden, Fläche 15 × 2 m
- Hg fliesst mit 15 cm/s, Sole dazu im Gleichstrom
- ca. 3 t Hg/Zelle

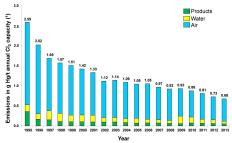
#### ► Produkte

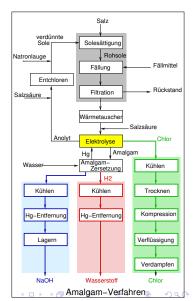
- Dünnsole: noch 270 g/l NaCl
- $\bullet\,$  Na-Amalgam mit bis ca. 0.5 % Na
- für alle Produkte: Hg-Abscheider




# ② Amalgam-Verfahren: Amalgam-Abscheider/Zersetzer

- ► Reaktion:  $2Na + 2H_2O \longrightarrow 2NaOH + H_2$
- ▶ katalytische Reaktion an Graphit (kurzgeschlossener Hg/C-Kontakt)
- ▶ Bauarten: Vertikal- oder Horizontalabscheider
- ▶ NaOH bis 50 Gew.-%
- ▶ flexibel, da Herstellung anderer Na-Salze möglich:


Na-Alkoholate: Na + 
$$R$$
-OH  $\longrightarrow$   $R$ -O $^-$  + Na $^+$  + H $_2$  Na-Dithionit: Na + SO $_2$   $\longrightarrow$  Na $_2$ S $_2$ O $_4$ 


▶ hierfür Amalgamverfahren bis auf Weiteres zugelassen

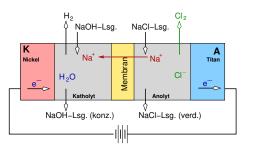


# ② Amalgam-Verfahren (Forts.)

- Sole wird im Kreislauf geführt
- in allen Produktströmen Hg-Abscheider erforderlich
- zusammenfassend:
  - ⊕ Cl<sup>−</sup>-freie Natronlauge (<0.01 %)
  - $\ominus$ mittlerer Energieverbrauch (ca. 2 800 kWh/t NaOH)
  - $\ominus$  Hg! (1992: 26 t; Europa 2016: 1.4 t)






# ② Amalgam-Verfahren (Fotos)



Fa. BASF, Ludwigshafen, 2010 (2013: 170 000 t $\rm Cl_2/a;$  Hg-'Verbrauch': 0.64 g $\rm Hg/t~Cl_2)$ 

- Einleitung
- 2 Vorbehandlungen der Sole
- 3 ① Diaphragma-Verfahren
- ② Amalgam-Verfahren
- **6** ③ Membran-Verfahren
- 6 Vergleich der Verfahren
- @ Eigenschaften, Produktionszahlen und Verwendung der Produkte
- S Literatur

#### 3 Membran-Verfahren: Prinzip



- ► Elektroden analog zum Diaphragma-Verfahren (A Ti; K Ni)
- ► Membran nur Na<sup>+</sup>-permeabel und hydraulisch dicht
- ▶ vollständige Trennung der Gase, von Wasser und Cl⁻-Ionen in den beiden Halbzellen
- ► Anodenraum: NaCl: 310 g/l  $\Rightarrow$  200 g/l
- ► Kathodenraum: NaOH: 30 Gew.-%  $\Rightarrow$  32 Gew.-%

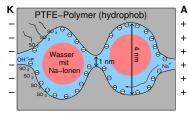
#### 3 Membran-Verfahren: Die Membran

- polymere fluorierte Kohlenwasserstoffe
- Seitenketten mit Sulfonat- und Carboxylat-Gruppen
- ▶ 'Nafion' (Fa. DuPont); käuflich: H-Form
- ➤ 2-[1-[Difluor[(trifluorethenyl)oxy]methyl]-1,2,2,2-tetrafluorethoxy]-1,1,2,2-tetrafluorethansulfonsäure
- ▶ hydraulisch undurchlässig
- ► Na<sup>+</sup>-Ionenleiter
- ▶ Dicke: 130-250  $\mu m$
- ▶ auf gelochter Kathode befestigt
- ▶ bei sauberer Sole (< 0.02 ppm Ca/Mg) mehrere Jahre haltbar

$$F_{2}C$$

$$F_{3}$$

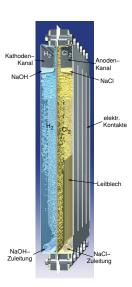
$$F_{4}$$


$$F_{5}$$

$$F_{5}$$

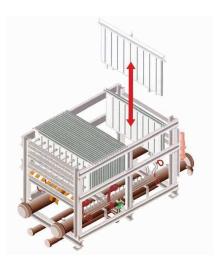
$$F_{6}$$

$$F_{7}$$


Chemismus der Membran



Funktionsweise der gequollenen Membran


#### ③ Membran-Verfahren: Einzelzelle\*

- ► A Ti mit TiO<sub>2</sub>/RuO<sub>2</sub>-Deckschicht
- ► K Ni
- ► Zuleitungen usw. aus Teflon (PTFE)
- ► Anodenhalbraum mit Einbauten (Bleche zum Umlauf)
- ► Cl<sub>2</sub>-Blasen, Ausleitung gelöst in NaCl
- ► Kathodenhalbraum ohne Einbauten
- ▶ Strom in Reihe durch Module
- ► Stoffstrom parallel durch Zellbatterie
- ▶ aktive Fläche pro Element: 5 m²



#### 3 Membran-Verfahren: Module

- ▶ modulare Anlagen, bis ca. 200 Zellmodule
- Versorgung/Zuleitungen usw. von unten (Zugänglichkeit)
- ➤ Strom in Reihe durch Module (bipolare Zellen)
- ► Stoffstrom parallel durch Zellbatterie



(Quelle: Fa. Thyssen-Krupp Electrolysis GmbH)

#### 3 Membran-Verfahren

typische Betriebsbedingungen

 $\bullet$  Spannung: 2.3 - 3.2 V

• Stromdichte: bis 7 kA/m<sup>2</sup>

•  $T = 88-90 \, {}^{\circ}C$ 

▶ Produkte

• Katholyt: 32 Gew.-% NaOH

• NaCl-Gehalt < 30 ppm

•  $Cl_2$ : > 98 Vol.-% ( $O_2 < 1$  Vol.-%)

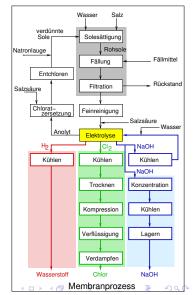
•  $H_2$ : > 99.9 Vol.-%

Sole- und NaOH-Kreisprozeß

► zusammenfassend:

→ sehr saubere Sole erforderlich

→ Membran teuer und empfindlich


geringerer Energieverbrauch

 $\oplus~$ bis 35 % NaOH möglich

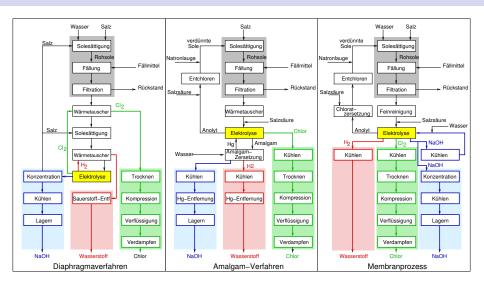
 $\oplus\,$ praktisch Cl $^-$ -freie NaOH

 $\oplus\,$ kein Asbest, kein Hg

⊕ Energieverbrauch ca. 2000 kWh/t NaOH



# ② Membran-Verfahren (Foto)



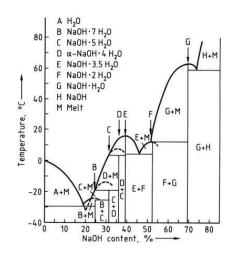

Montage der Module eines bipolaren Uhde BM 2.7 Elektrolysiers

(Quelle: Fa. Thyssen-Krupp Electrolysis GmbH, ehem. Uhde/Thyssen-Krupp, DeNora)

- Einleitung
- 2 Vorbehandlungen der Sole
- 3 ① Diaphragma-Verfahren
- 4 2 Amalgam-Verfahren
- **5** 3 Membran-Verfahren
- 6 Vergleich der Verfahren
- @ Eigenschaften, Produktionszahlen und Verwendung der Produkte
- S Literatur

# Gegenüberstellung der Verfahrensschritte




#### Vergleich der Verfahren

| Verfahren                        |       | Diaphragma-V.                                                                   | Amalgam-V.                | Membran-Verfahren              |
|----------------------------------|-------|---------------------------------------------------------------------------------|---------------------------|--------------------------------|
| Anode                            |       | RuO <sub>2</sub> /TiO <sub>2</sub> /SnO <sub>2</sub> -beschichtetes Ti-Substrat |                           |                                |
| Kathode                          |       | Stahl                                                                           | Hg                        | Ni mit Edelmetall-Beschichtung |
| Separator                        |       | Asbest                                                                          | -                         | Ionenaustauschermembran        |
| Zellspannung [V]                 |       | 2.90 - 3.60                                                                     | 3.15 - 4.80               | 2.35 - 4.00                    |
| Stromdichte [kA/m <sup>2</sup> ] |       | 2.2 - 14.5                                                                      | 0.8 - 2.7                 | 1.0 - 6.5                      |
| pH                               |       | 2.5 - 3.5                                                                       | 2 - 5                     | 2 - 4                          |
| Energie (nur Elektrolyse)        |       | 2600 - 3100 kWh                                                                 | 3000 - 4400 kWh           | 2100 - 3000 kWh                |
| Heissdampf                       |       | 2.7 - 5.3 t                                                                     | _                         | 0.5 - 1.7 t                    |
| Kathoden-Produkt                 |       | 10 - 12 % NaOH, H <sub>2</sub>                                                  | Na-Amalgam                | 30 - 33 % NaOH, H <sub>2</sub> |
| Zersetzer-Produkt                |       | _                                                                               | 50 % NaOH, H <sub>2</sub> | _                              |
| Verdampfer-Produkt               |       | 50 % NaOH                                                                       | _                         | 50 % NaOH                      |
| NaOH- N                          | aCl   | 10 000 mg/kg                                                                    | 50 mg/kg                  | 50 mg/kg                       |
| Fremdstoffe NaC                  | $O_3$ | 1 000 mg/kg                                                                     | 5 mg/kg                   | 10 - 15 mg/kg                  |
| Cl <sub>2</sub> -                | $O_2$ | 0.5 - 2.0                                                                       | 0.1 - 0.3                 | 0.5 - 2.0                      |
| Fremd-                           | $H_2$ | 0.1 - 0.5                                                                       | 0.1 - 0.5                 | 0.03 - 0.3                     |
| stoffe [Vol%]                    | $N_2$ | 1.0 - 3.0                                                                       | 0.2 - 0.5                 | _                              |
| Nachteile                        |       | Asbest                                                                          | Hg                        | teuer (Membran)                |
| Vorteile                         |       | günstig, konz. NaOH                                                             | flexibel (Zers.)          | sauber                         |

- Einleitung
- 2 Vorbehandlungen der Sole
- 3 ① Diaphragma-Verfahren
- 4 2 Amalgam-Verfahren
- **5** 3 Membran-Verfahren
- 6 Vergleich der Verfahren
- @ Eigenschaften, Produktionszahlen und Verwendung der Produkte
- S Literatur

## Eigenschaften und Verwendung von NaOH

- ▶ Weltjahresproduktion:  $50 \cdot 10^6$  t (2023)
- ▶ im Handel:
  - Lösungen: bis ca. 50 Gew.-%
  - Mp: 320 °C  $\mapsto$  in Formen gegossen
- ► Verwendung:
  - 29 %: Organische Synthesen (Farbstoffe, Pharmaka, Textilfasern)
    - 4 %: Seifenproduktion (Kernseifen)
    - 4 %: Bleiche (Textilverarbeitung)
    - 5 %: Al und andere Metalle (Bauxit-Verfahren)
  - 12 %: Papier- und Zellulose-Verarbeitung
  - 3 %: Nahrungsmittel
  - 3 %: Phosphate
  - 18 %: andere anorganische Salze
  - 18 %: Sonstiges
- Grafik für 2024 (S. 13)
- ➤ Preis: 523 US-\$/t (Europa 12.2024, aktuell mit starken Schwankungen)



S. U. Pickerring, J. Chem. Soc. 63, 890 (1893).

## Eigenschaften und Verwendung von Chlor

- Europa:  $7.289 \cdot 10^3$  t (2023; -11 % gegenüber 2022)
- ► Verwendung (Europa)
  - 32 %: PVC
- 31 %: Isocyanate und Oxygenate
- 15 %: Anorganische Cl-Verbindungen
- 12.8 %: Cl-Methan, Epichlorhydrin (Lösungsmittel)
  - 8.8 %: andere Organika
- Grafik für 2024 (S. 12)
- ▶ Preis: 330 US-\$/t (Europa)

- Einleitung
- 2 Vorbehandlungen der Sole
- 3 ① Diaphragma-Verfahren
- ② Amalgam-Verfahren
- **5** 3 Membran-Verfahren
- 6 Vergleich der Verfahren
- @ Eigenschaften, Produktionszahlen und Verwendung der Produkte
- 8 Literatur

#### Literatur

#### Bücher und Artikel

- C. Kurt, J. Bittner: Sodium Hydroxide; in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH (2012).
- P. Schmittinger, Th. Florkiewicz, L. C. Curlin, B. Lüke, R. Scanell, Th. Navin, E. Zelfe, R. Bartsch: Chlorine; in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH (2012).
- ► Electrochemistry Encyclopedia
- Winnacker-Küchler: Chemische Technologie, Band I
- ► Emmons et al.: Technische Anorganische Chemie, 4. Aufl. 1990.
- ► Chlorine Industry Review 2023/2024
- ▶ Th. Brinkmann, G. G. Santonja, F. Schorcht, S. Roudier, L. D. Sancho (European Commission): Best Available Techniques (BAT) Reference Document for the Production of Chlor-alkali, 2014.

#### Links

- ► DeNora
- ► Thyssen-Krupp Nucera (Chloralkali-Seite)
- www.eurochlor.com

# Inhalt (Prozess- und Stoff-Auswahl)

- Einleitung
- 2 Gase
  - $\bullet$  Edelgase,  $\mathcal{N}_2,\,\mathcal{O}_2$  (Luftzerlegung, Rektifikation)  $\checkmark$
  - Ammoniak (inkl. Wasserstoff; Gasreaktion)
- Salze
  - KCl (Feststoffprozessierung ohne Stoffumwandlung)  $\checkmark$
  - Na<sub>2</sub>CO<sub>3</sub> (reziproke Umsetzung) ✓
  - Phosphate (Neutralisations- und Verdrängungsreaktionen)
  - Chlorate und Perchlorate (elektrochemische Oxidation)
- 4 Säuren
  - Schwefelsäure (über Gasreaktionen)
  - Essigsäure (homogene Katalyse)
  - Phosphorsäure (durch Verdrängungsreaktionen)
  - Salpetersäure
- 6 Basen
  - Chloralkali-Elektrolyse (technische Elektrolyse)
- 6 Metalle
  - Eisen, Stahl 🌣
  - Kupfer 🜣
  - Aluminium
- Weitere Anorganische Grund- und Wertstoffe
  - Zementklinker, Gläser, Düngemittel, Hochtemperaturwerkstoffe, Explosivstoffe,